Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Int J Biol Macromol ; 268(Pt 1): 131744, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663711

ABSTRACT

Herpetrione(HPE) is an effective compound that has been used in the treatment of liver diseases. To improve its dissolution and absorption, herpetrione nanosuspensions was prepared. Nanosuspensions were proved to achieve intact absorption in vivo. However, the transport mechanisms are not fully understood, especially lack of direct evidence of translocation of particulates. In this study, an environment-responsive dye, P4, was loaded into herpetrione amorphous nanoparticles (HPE-ANPs) to elucidate the absorption and transport mechanism of the nanoparticles. And the amount of HPE and nanoparticles in the samples were quantified using HPLC/LC-MS/MS and IVIS with the model of Caco-2 and Caco-2/HT29-MTX. Results demonstrated that HPE is mainly taken up by passive diffusion in the form of free drugs, while HPE-ANPs are internalized by an energy dependent active transport pathway or intracellular endocytosis. It is speculated that HPE-ANPs may change the original entry pathway of drug molecules. Furthermore, the presence of mucus layer and the use of HPMC E15 may contribute to drug absorption to some extent. Transcellular transport study indicates that HPE-ANPs has a poor absorption. In conclusion, the differences in the absorption behavior trends of HPE-ANPs are caused by the difference in particle properties and the form of existence of the drug.

2.
J Microencapsul ; 40(8): 587-598, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37733492

ABSTRACT

The aim of this study was to enhance the dissolution rate and oral bioavailability of herpetetrone (HPT) by preparing nanosuspensions (NSs) and evaluate the changes in its anti-hepatic fibrosis effect. Herpetetrone nanosuspension (HPT-NS) was prepared using the ultrasound-precipitation technique, and characterised on the basis of mean diameter, zeta potential (ZP), encapsulation efficiency percent (EE%), scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD). In addition, the pharmacokinetics and anti-hepatic fibrosis activity were evaluated. HPT-NS prepared with the optimised formulation was found to be spherical with mean diameter of 177.48 ± 6.13 nm, polydispersity index (PDI) of 0.108 ± 0.002 and ZP of -17.28 ± 2.02 mV. The EE (m/m, %) was 83.25 ± 0.27. XRPD analyses confirmed that the amorphous state of HPT in HPT-NS remained unchanged. The dissolution rate of HPT-NS was significantly higher than that of HPT coarse suspensions (HPT-CSs). Following oral administration, Cmax and AUC0-t of HPT-NS showed a significant increase (p < 0.05). In vitro, HPT inhibited the proliferation of HSC-T6 cells and induced apoptosis by up-regulating the expression of Bax proteins and down-regulating the expression of Bcl-2 and TGF-ß1 proteins. Compared with HPT-CS, HPT-NS exhibited a more pronounced anti-fibrotic effect. HPT-NS, as a new drug formulation designed to improve the solubility and bioavailability of the drug, shows promising potential in enhancing the anti-liver fibrosis effect.


Subject(s)
Nanoparticles , Humans , Solubility , Biological Availability , Suspensions , Microscopy, Electron, Scanning , Administration, Oral , X-Ray Diffraction , Fibrosis , Particle Size
3.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2116-2125, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282900

ABSTRACT

This study aims to separate and characterize self-assembled nanoparticles(SAN) from Shaoyao Gancao Decoction(SGD) and determine the content of active compounds. Further, we aimed to observe the therapeutic effect of SGD-SAN on imiquimod-induced psoriasis in mice. The separation of SGD was performed by dialysis, and the separation process was optimized by single factor experiment. The SGD-SAN isolated under the optimal process was characterized, and the content of gallic acid, albiflorin, paeoniflorin, liquiritin, isoliquiritin apioside, isoliquiritin, and glycyrrhizic acid in each part of SGD was determined by HPLC. In the animal experiment, mice were assigned into a normal group, a model group, a methotrexate group(0.001 g·kg~(-1)), and SGD, SGD sediment, SGD dialysate, and SGD-SAN groups of different doses(1, 2, and 4 g·kg~(-1)) respectively. The psoriasis grade of mice was evaluated based on the pathological changes of skin lesions, the content of inflammatory cytokines, organ index and other indicators. The results showed that SAN obtained by centrifugation at 13 000 r·min~(-1) for 30 min was stable after dialysis for 4 times, which were uniform spherical nanoparticles with the particle size of(164.43±1.34) nm, the polydispersity index of(0.28±0.05), and the Zeta potential of(-12.35±0.80) mV. The active compound content accounted for more than 70% of SGD. Compared with the model group, SAN and SGD decreased the skin lesion score, spleen index, and inflammatory cytokine levels(P<0.05 or P<0.01) and alleviated the skin thickening and infiltration of inflammatory cells. However, the sediment group and the dialysate group had no obvious effect. SGD showed a good therapeutic effect on imiquimod-induced psoriasis in mice, and SAN demonstrated the effect equivalent to SGD in a dose-dependent manner. Therefore, we conclude that the SAN formed during decocting is the main active form of SGD, which can lower the levels of inflammatory cytokines, promote the normal differentiation of keratinocytes, and reduce the infiltration of inflammatory cells in the treatment of psoriasis lesions in mice.


Subject(s)
Drugs, Chinese Herbal , Mice , Animals , Imiquimod , Drugs, Chinese Herbal/pharmacology , Glycyrrhizic Acid , Chromatography, High Pressure Liquid/methods
4.
J Drug Target ; 31(3): 278-285, 2023 03.
Article in English | MEDLINE | ID: mdl-36322516

ABSTRACT

Nanotechnology has been a primary strategy to enhance oral bioavailability of poorly water soluble drugs. However, the limited information in vivo fate of impedes the development of nanoparticles via the oral delivery, especially the amorphous nanoparticles with high energy states are rarely reported. This study is to track the translocation of oral herpetrione amorphous nanoparticles (HPE-ANPs). We prepare amorphous particles (ANPs) of various sizes (200 nm and 450 nm), which are embedded with an aggregation-caused quenching (ACQ) dyes for tracking the intact nanoparticles. Nanoparticles remain in the gastrointestinal tract (GIT) for 8 h following oral administration, suggesting that most ANPs was mainly degraded or absorbed in the small intestine. Ex vivo imaging shows that the fluorescent signals are observed in the GIT and liver but not in other organs, which attributed to low absorption of integral nanoparticles. Besides, HPE-ANPs may be directly interact with GIT epithelia, and ileum provides better absorption than the jejunum. Cellular studies prove that integral HPE-ANPs can be taken up by enterocyte, while it penetrates cell monolayers only small amounts. In conclusion, we speculate that the drug in the form of integral nanoparticles and small molecules may be co-absorbed to improve bioavailability in vivo.


Subject(s)
Furans , Nanoparticles , Administration, Oral , Particle Size , Biological Availability
5.
Drug Dev Ind Pharm ; 47(10): 1664-1673, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35188016

ABSTRACT

The objective of this study was to develop novel herpetrione (HPE) nanosuspensions stabilized by glycyrrhizin (HPE NSs/GL) for enhancing bioavailability and hepatoprotective effect of HPE. HPE NSs/GL were prepared by wet media milling method and then systemically evaluated by particle size analysis, scanning electronic microscopy (SEM), X-ray powder diffraction (XRPD), dissolution test, pharmacokinetics, and hepatoprotective effect. HPE-NSs stabilized by poloxamer 407 (HPE NSs/P407) were also prepared and used as a reference for comparison. HPE NSs/GL and HPE-NSs/P407 with similar particle sizes around 450 nm and PDI less than 0.2 were successfully prepared and both of them appeared to be spherical under SEM. The XRPD results demonstrated that HPE in both HPE NSs/GL and HPE NSs/P407 was presented in the amorphous state and the addition of GL or P407 and the milling process didn't alter the physical state of HPE. The dissolution and pharmacokinetic studies demonstrated that HPE NSs/GL exhibited significant enhancement in drug dissolution (72.44% within 24 h) and AUC0-t (24.91 ± 3.3 mg/L·h) as compared to HPE coarse suspensions (HPE CS, 34.19% & 13.07 ± 1.02 mg/L·h), but was similar with those of HPE NSs/P407 (80.06% & 26.75 ± 4.06 mg/L•h). Moreover, HPE NSs/GL exhibited significantly better hepatoprotective effect as compared to HPE CS and HPE NSs/P407 as indicated by the lowering of the elevated serum ALT and AST levels and the improvement of the hepatic morphology and architecture, which might be attributed to the improved bioavailability of HPE, and synergistic hepatoprotective effect of GL via alleviating inflammation evidenced by the significant decreased hepatic levels of inflammatory cytokines IL-1ß, IL-6 and TNF-α. It could be concluded that GL might be an effective stabilizer for preparing HPE NSs, and HPE NSs/GL is a potential formulation strategy for improving oral bioavailability and hepatoprotective effect of HPE.


Subject(s)
Glycyrrhizic Acid , Nanoparticles , Administration, Oral , Biological Availability , Furans , Particle Size , Powders , Solubility , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...